

DATA SCIENCE IM RAHMEN HIGHLY AUTOMATED DRIVING HD KARTENERSTELLUNG

HARMAN

A SAMSUNG COMPANY

DR.TOBIAS EMRICH, ERICTHEISINGER 20.03.2018

I. HARMAN – Who We Are & What We Do

2. Connected Car & SBU Autonomous Driving - Activities

3. HD Map Motivation

4. HD Map Data Science Challenges

5. Summary

WHO WE ARE & WHAT WE ARE DOING

GLOBAL GROWTH CONTINUES

Innovation breeds quantifiable success

- **30,000** Professionals worldwide
- 15,000 Engineers ~80% Software
- **30+** Countries: Americas, Europe and Asia
- 16+ Legendary brands

- 6,529 Patents and patents pending
- 42 Design awards in 2017
- 3 GRAMMY® Awards- AKG, JBL, LEXICON
- 2 Academy Awards

GLOBALLY DIVERSE

INNOVATION LEADER

WHO WE ARE & WHAT WE ARE DOING HARMAN TECHNOLOGIES FOR A CONNECTED WORLD

Navigation, Multimedia, Connectivity, Telematics, Safety & Security Solutions

Premium Branded Audio Products and Sound Management Software for Car, Home and on the Go

Audio, Lighting, Video Switching and Automation for Enterprise and Entertainment

Cloud, Mobility and Analytics Solutions with OTA Updates for Car, Mobile and Enterprises

WHO WE ARE & WHAT WE ARE DOING

WEAREA HOUSE OF BRANDS

WHO WE ARE & WHAT WE ARE DOING

36+ GLOBAL AUTO BRANDS AND GROWING

WHO WE ARE & WHAT WE ARE DOING SAMSUNG AND HARMAN SYNERGIES

HARMAN

CONNECTED CAR & SBU AUTONOMOUS DRIVING - ACTIVITIES TOMORROWS DIGITAL COCKPITS

Realizing the most advanced infotainment and digital cockpit systems

Features

- Augmented Reality Displays
- Best-in-class Navigation
- Cloud Based Driver Profiles
- Virtual Personal Assistants
- Multi-modal approach to interact with different UI/UX systems (i.e., haptic, gestural, driver monitoring, etc...)

5G always connected

• First automotive grade 5G ready solution

CONNECTED CAR & SBU AUTONOMOUS DRIVING - ACTIVITIES DS TOPICS TODAY AND TOMORROW

Example Data Science tasks in todays systems

- Map Compilation for Navigation Service
- Processing of Fleet information for up-to-date information layers to onboard navigation systems
- Predicted Traffic Information
- Voice Input
- Destination Input

Data Fusion

Stream Mining Machine Learning NLP

Entity Resolution

HD MAP MOTIVATION

HARMAN

WHAT IS AN HD MAP?

HD Map Characteristics

- Highly detailed + accurate
- Up-to-Date
- Topology
- Geometry
- Geo-Reference Services

The HD Map...

- extends the car's view
- supports autonomous driving in challenging scenarios
- compensates for sensor/detection errors
- improves localization
- is utilized in simulation environment

© 3D Mapping Solutions

AUTONOMOUS VEHICLES NEED HD MAPS

Current Maps

• SD Maps (sufficient for navigation)

HD MAP MOTIVATION

- Large coverage
- Not very accurate (i.e., street level)
- HD Maps (from survey campaigns)
 - Low coverage
 - Collected with expensive sensors, manual postprocessing

© 3D Mapping Solutions

HARMAN

→ HD Map is a key part towards Autonomous Driving and DS is a crucial part of the solution

HD MAP MOTIVATION

CROWDSOURCING INFRASTRUCTURE

GENERAL CHALLENGES

Accuracy

- Lanes, traffic signs, ... should have an accuracy < 10cm
- Positioning and measurement errors sometimes several meters

Up-to-date

- Updates should be visible in global map as fast as possible
- Tradeoff: update speed vs. confidence

Resource constraings

- Bandwidth: accuracy vs. model size
- Computational limitations

Variablity

- Sensor heterogenity
- Data, quality and ecosystem heterogenity

ON BOARD CHALLENGES

Semantic Feature Detection Traffic Signs

- Semantic Information + Landmarks
- Object Detection = Region Proposal + Classification
- Detection Speed vs. Accuracy Tradeoff

Traffic Lane

- Positioning perpendicular to driving direction
- Computer Vision vs. Deep Learning

Semantic Segmentation

- Supports traffic sign and lane detection
- Enriches the map content
- Quality assessment of landmarks

Transformation Gap: Image Space ⇒ Real-World

HARMAN

ON BOARD CHALLENGES

Simultaneous Localization and Mapping

Perfect map ⇒ localization is "easy" Perfect localization ⇒ mapping is "easy"

SLAM

- Identification of landmarks that are visible from different positions
- Measurement of position change
- Construct Triangles (= Posegraph)
- Adjustment of measurement errors

Visual SLAM

- Landmarks = Image Keypoints
- Position Change = Bundle Adjustment
- Byproduct: image to world correspondence

OFF BOARD CHALLENGES

Building the global map

OFF BOARD CHALLENGES

Building the global map

Vehicle Data (simplified)

- Trajectories
- Observations
 - Traffic Signs
 - Traffic Lanes (ego)

0<

OFF BOARD CHALLENGES

Building the global map

Vehicle Data (simplified)

- Trajectories
- Observations
 - Traffic Signs
 - Traffic Lanes (ego)

OFF BOARD CHALLENGES

Building the global map

Topology

- Challenges:
 - GPS Quality/Errors/Outliers/Resolution
 - Scalability
 - Automatic Adaptataion
 - Border Effects

Vehicle Data (simplified)

- Trajectories
- Observations
 - Traffic Signs
 - Traffic Lanes (ego)

OFF BOARD CHALLENGES

Building the global map

Topology

- Challenges:
 - GPS Quality/Errors/Outliers/Resolution
 - Scalability
 - Automatic Adaptataion
 - Border Effects
- Methods:
 - Trajectory Clustering
 - Map Construction Algorithms
 - Self-Organizing Maps

• ...

Vehicle Data (simplified)

- Trajectories
- Observations
 - Traffic Signs
 - Traffic Lanes (ego)

OFF BOARD CHALLENGES

Building the global map Geometry

- Challenges:
 - Outliers/Quality/Misdetections
 - Border Effects
 - Scalability
 - Association

Local Maps (simplified)

- Trajectories
- Observations
 - Traffic Signs
 - Traffic Lanes (ego)

OFF BOARD CHALLENGES

Building the global map Geometry

- Challenges:
 - Outliers/Quality/Misdetections
 - Border Effects
 - Scalability
 - Association
- Methods:
 - Assignment Algorithms
 - Clustering
 - Probabilistic Models
 - Graph Optimization

• ...

Local Maps (simplified)

- Trajectories
- Observations
 - Traffic Signs
 - Traffic Lanes (ego)

DATA SCIENCE TO CREATE HD MAPS

HD Map is a key part towards Autonomous Driving and Data Science is a crucial part of the solution!

On Board

• Neural Networks, Computer Vision, Pattern Recognition, Probabilistic Filters, SLAM, NLP, ...

Off Board

 Graph Optimization, Clustering, Big Data, Machine Learning, Entity Matching, Genetic Algorithms, Data Integration, Uncertain Data Processing, Spatial Modeling, Assignment Algorithms, Outlier Detection,...

HARMAN A SAMSUNG COMPANY

THANK YOU

TOBIAS.EMRICH@HARMAN.COM