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Deep Blue beats Garry Kasparov (1997)

Brute force computing power	(massively parallel	system,	
evaluation of 200	million positions per	second),	
systematic search,	structured domain.

Watson wins Jeopardy! (2011)

Massive	information retrieval (four
terabytes of structured and

unstructured content),	yet little
reasoning and learning.

Essentially based on	machine learning
technology,	makes use of deep neural networks

and combines different	types of learning
(supervised,	reinforcement,	MCTS)	

AlphaGo beats Lee Sedol (2016)
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Deep Blue beats Garry Kasparov (1997)

Algorithmics
+ programming

Watson wins Jeopardy! (2011)

Knowledge 
+ retrieval

Data
+ learning

AlphaGo beats Lee Sedol (2016)
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classical 
programming

“implicit”
programming

? ?

knowledge-based 
programming

automated 
machine learning
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a l g o r i t h m

x

yf

computer scientist

start

end
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a l g o r i t h mcomputer scientist

ALGORITHM shortest-path(V,T)
W := {v1}   
ShortDist[v1] :=0   
FOR each u in V - {v1}      

ShortDist[u] := T[v1,u]         
WHILE W /= V      

MinDist := INFINITE      
FOR each v in V - W         

IF ShortDist[v] < MinDist
MinDist = ShortDist[v]
w := v         

END {if}      
END {for}      
W := W U {w}      
FOR each u in V - W         

ShortDist[u] := Min(ShorDis[u],ShortDist[w] + T[w,u])   
END {while}

x

yf



T H E  A L G O R I T H M I C  A P P R O A C H
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Requires a comprehensive understanding and adequate formalization, 
not only of the problem, but also of the solution process. 

a l g o r i t h m

x

yf

computer scientist



C O M P L E X  P R O B L E M S
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A U TO N O M O U S  C A R S

G A M E  P L AY I N G ROBOT 	 SOCCER

MALE 

I M A G E  R E C O G N I T I O N

action vector
state vector

describing the
environment

x

yf
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classical 
programming

? ?

knowledge-based 
programming

… is difficult for
truly complex

problems
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E X P E R T

KNOWLEDGE	
BASE

INFERENCE	
ENGINE

Representation of problem-specific
knowledge, such as facts and rules
about a domain. „What“ but not „how“!

§ Generic control structure implemented by the inference engine.
§ programs = theories of a formal logic, computations = deductions.
§ Closely connected to declarative programming languages such as PROLOG.
§ Appealing if it‘s difficult to explain HOW the problem is solved.



K N O W L E D G E - B A S E D  S Y S T E M S
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E X P E R T

Representation of problem-specific
knowledge, such as facts and rules
about a domain. „What“ but not „how“!

§ Generic control structure implemented by the inference engine.
§ programs = theories of a formal logic, computations = deductions.
§ Closely connected to declarative programming languages such as PROLOG.
§ Appealing if it‘s difficult to explain HOW the problem is solved.

IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
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classical 
programming

“implicit”
programming

? ?

knowledge-based 
programming

… is difficult for
truly complex

problems

… suffers from
knowledge acquisition 

bottleneck



I M P L I C I T  S K I L L S

13

H u m a n  s k i l l s a r e n o t  a l w a y s e a s y  t o e x p l a i n !

MALE 
OR 

FEMALE
f
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H u m a n  s k i l l s a r e n o t  a l w a y s e a s y  t o e x p l a i n !

For example, a 
reduction of the 
search space does not 
immediately imply 
better solutions.

Eine Beschränkung des 
Suchraums führt
beispielsweise nicht
unmittelbar zu
besseren Lösungen. 

f
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H u m a n  s k i l l s a r e n o t  a l w a y s e a s y  t o e x p l a i n !

f
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- give examples and let
the system generalize

à supervised learning

Instead of providing a complete and consistent description of domain knowledge, 
or designing a model by hand, it is easier to ...

- demonstrate and let
the system imitate

- let the system explore
and provide feedback

à reinforcement learning à imitation learning

MALE 
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computer scientist

x

yf

“Machine learning is the science of getting computers
to act without being explicitly programmed.”

Andrew Ng, 2013
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computer scientist

x

yf

x

yfL E A R N E RDATA
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L E A R N E R
DATA

computer scientist

x

yf

x

yf
PRIOR 

KNOWLEDGE

Learning	does	not	mean	turning	data	into	knowledge,	but	
revising	prior	knowledge	in	the	light	of	observed	data.	
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M O D E L S E L E C T I O N
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classical 
programming

“implicit”
programming

? ?

knowledge-based 
programming

automated 
machine learning

… is difficult for
truly complex

problems

… suffers from
knowledge acquisition 

bottleneck

… still requires
a lot of ML 
expertise
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The computer/ML/data scientist is not supposed to solve the actual problem 
(provide an algorithm) but the problem to learn how to solve that problem.  

That’s not necessarily an easy task either …

L E A R N ERDATA
x

yf

Replacing the programmer by a learning algorithm …
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ML Paradigms

- Active learning 
and experiment design 

- Cost-sensitive learning
- Inverse reinforcement learning 
- Meta learning
- Multi-task learning
- Online learning
- Reinforcement learning
- Semi-supervised learning
- Transductive learning
- Structured output prediction
- Transfer learning
- …

ML Methodologies

- Deep learning
- Gaussian processes 
- Graphical models

and Bayesian networks 
- Inductive logic programming 
- Kernel-based methods

and support vector machines
- Latent variable and topic models
- Markov networks
- Preference learning and ranking 
- Relational learning 
- Rule and decision tree learning
- Sparsity and compressed sensing
- …
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Objective of the learning problem
- specify the type of problem and prediction task to be solved
- success criteria (accuracy/loss function, model complexity, ...)
- ...
Specifying the model induction problem
- feature description
- kernel functions
- ...
Solving the model induction problem
- preprocessing, including feature selection, normalization, etc.
- model selection, choice of the model class
- choice of the learning algorithm
- estimation of generalization performance (e.g., cross-validation)
- tuning of hyper-parameters
- interpreting and reacting to feedback gathered from experiments
- postprocessing of models 
- ...
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DATA

TRAIN

VALIDATE

IMAGE
PARSER

NORMA-
LIZER

CONVOL-
VER

PATCH 
EXTRACTOR

PATCH 
WHITENER

PATCH 
SELECTOR

SYMMETRIC 
RECTIFIER

POOLER

TRAINING
CLASSIFIER

SETTING HYPER-
PARAMETERS
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U
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EX

TR
AC
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Example	of	an	ML	pipeline	
for	image	classification
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A deep (convolutional) neural net (determining network structure 
and training) may have more than 40 hyper-parameters:

o number of hidden units
o activation function
o convolution kernel width
o implicit zero padding
o weight decay coefficient
o loss function
o weight initialization
o learning rate
o batch size
o dropout rate
o …

When solving a practical problem, an ML scientist explicitly or 
implicitly fixes thousands of degrees of freedom …
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§ Several AutoML tools already exist (Auto-
WEKA, auto-sklearn, TPOT, RECIPE, 
RapidMiner, …).

§ Essentially, these tools realize a 
systematic search in the space of ML 
pipelines, assessing each candidate in 
terms of an estimated performance.
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§ On-the-Fly (OTF) Computing is a novel computing paradigm that aims at 
the provision of individually configured software services in a market 
environment that comprises so-called OTF providers, service providers, 
and end-users as main participants. 

§ The service requested by an end-user is automatically constructed by an 
OTF provider in an on-the-fly manner, and then executed in an OTF 
compute center. 

§ The OTF provider relies on existing services made available by service 
providers, which are freely traded on a global service market and flexibly 
combined in the course of a service composition process.  
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Clients
Provider
OTF Compute Center
OTF Software Provider

Provision of
IT-Services Organization of the market

Technical and economic
market infrastructure

Service Provider
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software service composition

Functionality specified in terms of pre- and

postconditions (logical predicates) hP
pre

, P
post

i

A C

B F E

D

Pprec P
post



O T F  C O M P U T I N G  A N D  M L

33

OTF 
Computing

Machine
Learning

Improving efficiency and quality of
service composition through ML

Automated composition
of ML services
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On-the-Fly Machine Learning (OTF-ML) as an instantiation of OTF 
computing: On-the-fly selection, configuration, provision, and execution of 

machine learning and data analytics functionality.
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OTF-ML
TRAIN TEST

TASK

TEST

predictions

OTF-MLTASK

customized software
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data pre-
processor

feature 
preprocessor

classifier

AutoML framework

Bayesian optimization

�
Xtrain, Ytrain,

Xtest, b,L
 Ŷtest

Existing approaches optimize parameters of a fixed ML pipeline. The parameter 
space is structured, each “point” defines algorithm selection (model) and configuration 

(hyper-parameters). Essentially restricted to (binary) classification. No backtracking 
(e.g., due to overall insufficient quality) and no user interaction.
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§ Hierarchical planning (Hierarchical Task Networks, HTN) as a more 
flexible and expressive formalism to create ML pipelines.

§ Recursive reduction of complex tasks to (complex or simple) subtasks.
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simple

next to be decomposed

complex

§ Algorithmically solved using graph search algorithms.
§ A node is a goal node if all remaining tasks are simple.
§ HTN via forward-decomposition: one successor is created for each 

possible decomposition of the first unsolved task in the list of remaining tasks.
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§ ML-Plan implements best-first search with node evaluation.
§ Problem: cost of a solution (e.g., expected loss of a classifier) cannot be 

computed from the descriptions of the plan elements.
§ Default node evaluation based on random path completion as also used 

in Monte Carlo Tree Search, combined optimistically (minimum).
§ Specific strategy to prevent over-fitting.

0.16 0.21 0.12 0.24

SEARCH
DATA

SELECTION
DATA

TEST
DATA

TRAINING

VALIDATION
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PolynomialFeatures

{degree: 2,
Include_bias: false,
Interaction_only: 
false}

StackingEstimator
{estimator:

}

BernoulliNB
{alpha=0.1, 
fit_prior=false}

RandomForestClassifier
{bootstrap: true,
criterion:: gini,
Max_features: 0.55,
Min_samples_leaf:3
Min_samples_split: 5,
N_estimators: 100}

.21, . 3, …
.53, .4, . .

…
.02, . 21…

1
3
…
2

Pipeline created for the page-
blocks benchmark data
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Data is extremely 
useful, and its 
increased availability 
enables AI applications 
beyond reach so far.

Yet, we cannot get rid 
of knowledge, nor of 
algorithms: Knowledge 
is needed to make 
sense of data, and 
algorithms to exploit it. 

With the trend toward 
data-driven design of 
systems, the knowledge 
required becomes more 
abstract, and algorithms 
more generic. 

? ?
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A L G O R I T H M

M L
A L G O R I T H M

algorithm
(predictor)

A u t o M L
A L G O R I T H M

ML algorithm
(learner)

M e t a M L
A L G O R I T H M

AutoML
algorithm

data

ML problem
(data)

ML problem
(data)

{MALE, FEMALE} 
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data algorithm
(predictor)

ML problem
(data)

ML algorithm
(learner)

ML problem
(data)

AutoML
algorithm

Instruct the computer how 
to solve the problem

Instruct the computer how 
to learn how to solve the 

problem

Instruct the computer how to 
find a good way to learn 
how to solve the problem

Instruct the computer how 
to learn how to learn how to 

solve the problem

{MALE, FEMALE} 
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data algorithm
(predictor)

ML problem
(data)

ML algorithm
(learner)

ML problem
(data)

AutoML
algorithm

Instruct the computer how 
to solve the problem

Instruct the computer how 
to learn how to solve the 

problem

Instruct the computer how to 
find a good way to learn 
how to solve the problem

Instruct the computer how 
to learn how to learn how to 

solve the problem

{MALE, FEMALE} 

The “ML as a service” idea comes with a number 
of interesting new challenges, both scientifically 

and from an application point of view. 


