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Machine Learning Reply, a Reply AG company

From strategic approach to implementation and 
operation, Machine Learning Reply covers the entire 

lifecycle on generating data and turn valuable insights 
into efficient actions.
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1. GOAL



Goal: intelligent coupon assignment for new partner

Problem:
• for new partners, no usage data 

exists yet
• existing personalization models 

fail

Customer: Benefit Program, running personalized and partner-specific 
promotions
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Goal: intelligent coupon assignment for new partner

• A lot existing 
data

Cooperation with 
many Partners

• Happens 
frequently

• no data in the
beginning

New Partners

• Make use of
existing data

• SparkML

Unsupervised
Model
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2. HOW WE 
TACKLED IT



How we tackled it Customer Neighbour1 Neighbour2
Julia Hans Franziksa
Georg Ingrid Peter
… … …

• if someone uses
a coupon, also 
play it out to
similar customers

Snowball 
Idea

• want to send out 
new coupons in 
realtime

Realtime 
Demands

• precompute
similar customers

• KNN

Solution
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Input Data Challenge

User P1 P2 P3 …
Sandra 1 0 23 …
Michael 0 0 2 …
Tom 4 11 3 …
… … … … …

• User * Partner Matrix
• how often they haved

used coupons
• 30+ Mio. Users
• 650+ Partners

Input Data

• Curse of
Dimensionality

• need to scale 
using Spark

Problems
compare different…
• distance functions
• dimension reductions
• KNN approximations

Solution
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high dimension is n > 9

""" Worse yet, when n>9, we have […] that        > 2,
and thus the point (      ,0,0,…,0) on the central 

sphere lies outside the hypercube of side 4,

even though it is "completely surrounded" by the 
unit-radius hyperspheres 

that "fill" the hypercube (in the sense of packing it). 
The central sphere "bulges" outside the hypercube 

in high-dimensional space."""
https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-

high-dimensions

hypercube of side 4
(packed with unit-radius spheres)

radius of inner sphere:



3. DIMENSION 
REDUCTIONS



Collaborative Filtering = Matrix Factorization
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Y. Zhou et al. 2008
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Topic Modelling = Probabilistic Matrix Factorization

• Document-WordProbability
matrix

• Document-TopicProbability
matrix 

• Topic-WordProbability
matrix

M.Hoffman et al. 2010
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4. APPROXIMATE 
KNN



Approximate KNN

Problem:
• Brute Force KNN is quadratic in runtime
• Computation time: a whole month

(on-premise)

Best Solution:
• Approximate with Local Sensitive Hashing (LSH)
• Computation Time: 3 hours
• Constraint: Only subset of metrics supported
• Still challenge to scale this properly

https://github.com/linkedin/scanns
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https://github.com/linkedin/scanns


5. RESULTS
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Results

Target Score: How many neighbours actually use coupons at 
the same Partners?

Distance: Cosine Distance
Dimension Reduction: Collaborative Filtering worked best for
Dimension Reduction
Approximation: LSH was that good in final performance, that
we haven‘t used dimension reduction at all in the final KNN

Running now in production



SUMMARY
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Summary

• intelligent coupon selection without having training data
• Snowball idea + realtime requirement
• Curse of Dimensionality, n > 9
• Collaborative Filtering / Topic Modelling

= Matrix Factorization / Probabilistic MF
• Best scalable KNN Approximation: LSH
• In production out there and assigning coupons today J
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Thanks a lot

Thank you very much for your attention!
s.sahm@reply.de

We are hiring!


