PRODUCTION CASE

REALTIME RECOMMENDATIONS ON SCALE USING K-NEAREST NEIGHBOURS

Stephan Sahm | Senior Consultant at Machine Learning Reply | Data Scientist and Machine Learning Engineer

Machine Learning Reply, a Reply AG company

Machine Learning Reply, a Reply AG company

From strategic approach to implementation and operation, Machine Learning Reply covers the entire lifecycle on generating data and turn valuable insights into efficient actions.

OUTLINE

GOAL HOW WE TACKLED IT DIMENSION REDUCTIONS APPROXIMATE KNN RESULTS

1. GOAL

Problem:

- for new partners, no usage data exists yet
- existing personalization models fail

Goal: intelligent coupon assignment for new partner

2. HOW WE TACKLED IT

Input Data Challenge

User

Tom

Sandra

Michael

P1

1

0

4

P2

0

0

11

2

3

. . .

. . .

high dimension is n > 9

hypercube of side 4 (packed with unit-radius spheres)

radius of inner sphere:

$$r_n=\sqrt{n}-1$$

""" Worse yet, when n>9, we have [...] that $r_n > 2$, and thus the point (r_n ,0,0,...,0) on the central sphere lies outside the hypercube of side 4,

even though it is "completely surrounded" by the unit-radius hyperspheres that "fill" the hypercube (in the sense of packing it). The central sphere "bulges" outside the hypercube in high-dimensional space."""

https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-inhigh-dimensions

3. DIMENSION REDUCTIONS

Collaborative Filtering = Matrix Factorization

 $r_{ij} = \langle \mathbf{u_i}, \mathbf{m_j} \rangle, \forall i, j$

Y. Zhou et al. 2008

Topic Modelling = Probabilistic Matrix Factorization

Document / Partner

 $p(w_d| heta,eta) = < heta_{d\cdot},eta_{\cdot w}>,orall d,w$ $r_{ij} = \langle \mathbf{u_i}, \mathbf{m_j} \rangle, \forall i, j$

- Document-WordProbability w_d matrix
- Document-TopicProbability heta matrix
- Topic-WordProbability matrix

 ${\mathcal{B}}$

4. APPROXIMATE KNN

Approximate KNN

Problem:

- Brute Force KNN is quadratic in runtime
- Computation time: a whole month (on-premise)

Best Solution:

- Approximate with Local Sensitive Hashing (LSH)
- Computation Time: 3 hours
- Constraint: Only subset of metrics supported
- Still challenge to scale this properly <u>https://github.com/linkedin/scanns</u>

ca

5. RESULTS

Results

Target Score: How many neighbours actually use coupons at the same Partners?

- **Distance:** Cosine Distance
- **Dimension Reduction:** Collaborative Filtering worked best for Dimension Reduction
- **Approximation:** LSH was that good in final performance, that we haven't used dimension reduction at all in the final KNN

Running now in production

SUMMARY

- intelligent coupon selection without having training data
- Snowball idea + realtime requirement
- Curse of Dimensionality, n > 9
- Collaborative Filtering / Topic Modelling
 - = Matrix Factorization / Probabilistic MF
- Best scalable KNN Approximation: LSH
- In production out there and assigning coupons today ③

Thank you very much for your attention! s.sahm@reply.de KEPLY MACHINE LEARNING We are hiring!