

Clinical Data Science in Radiology

German Data Science Day| Department of Radiology July 14, 2022 | Prof. Dr. rer. nat. Michael Ingrisch

Clinical Data Science in Radiology Group

Mission statement

Clinical Data Science in Radiology

Clinical questions Diagnosis Prognosis Therapy Analysis Statistical modeling Machine Learning Image analysis Computer vision Image data
X-ray
CT
MRI
Clinical information

Artificial Intelligence Learning machines

Strong AI

Applies intelligence to **any** problem Might have conciousness and mind

Weak AI Can solve a single problem Learns through experience, cannot extrapolate Learning machines

Tasks for AI in radiology The radiological value chain

Translation of AI

From scientific proof-of-concept to clinical application

Image classification Cats vs dogs

https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos-of-dogs-and-cats/

Clinical data science in radiology Roadmap

Radiology: mapping of image to clinical label – a supervised ML problem

Ask the right questions, and answer them with the right data

Finding the right data: unsupervised and weakly supervised approaches?

Requirements and adoption barriers for AI in radiology

https://www.kaggle.com/competitions/dogs-vs-cats/overview/description

Supervised machine learning in radiology Applied computer vision

Classification: liver metastases

Object detection

Phillip M. Cheng et al., Deep Learning: An update for radiologists, RadioGraphics 2021 41:5, 1427-1445 Semantic segmentation

Liver metastases No metastasis

Instance segmentation

Metastasis 1 Metastasis 2 Metastasis 3 Metastasis 4

Image classification in oncological imaging Virtual colonoscopy CT

Image classification in oncological imaging Virtual colonoscopy CT: Radiomics and deep learning

Ingrisch | Clinical Data Science in Radiology

- Differentiation between benign and pre-malignant polyps in virtual colonoscopy CT
- model validation: independent dataset (TCIA)

Grosu, Wesp, ..., Ingrisch, et al. Radiology 299(2), 2021 Wesp, Grosu,..., Ingrisch. European Radiology (2022)

Image classification in oncological imagingVirtual colonoscopy CT: Radiomics and deep learning

- Differentiation between benign and premalignant polyps in virtual colonoscopy CT
- model validation: independent dataset (TCIA)

Grosu, Wesp, ..., Ingrisch, et al. Radiology *299(2), 2021* Wesp, Grosu,..., Ingrisch. European Radiology (2022)

Ask the right questions!

Detection of pneumothorax on chest X-rays

Ask the right questions!

Detection of pneumothorax on chest X-rays

- Large datasets are publicly available
- ChestX-ray 14: 14 pathology labels, ~100k images
- Presence of pneumothorax can be predicted with reasonable performance
- CheXnet: AUC 0.89

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

Pranav Rajpurkar^{*1} Jeremy Irvin^{*1} Kaylie Zhu¹ Brandon Yang¹ Hershel Mehta¹ Tony Duan¹ Daisy Ding¹ Aarti Bagul¹ Robyn L. Ball² Curtis Langlotz³ Katie Shpanskaya³ Matthew P. Lungren³ Andrew Y. Ng¹

Image classification in radiology: A solved problem?

Geoffrey Hinton, 2016:

"People should stop training radiologists now. It's just completely obvious that within five years, deep learning is going to do better than radiologists."

Machine Learning and Market for Intelligence Conference. Toronto, Canada. 2016. <u>https://www.youtube.com/watch?v=2HMPRXstSvQ</u>.

AI in radiology Roadmap

Radiology: mapping of image to clinical decision – supervised ML problem

Ask the right questions, and answer them with the right data

Finding the right data: unsupervised and weakly supervised approaches?

Requirements and adoption barriers for AI in radiology

Pneumothorax detection on real-world data Subgroup analyses

	Ĺ
6434	Benc Annot

Benchmark cohort Annotated subgroups +- pneumothorax +- thoracic tubes

		TT		
		Yes, n (%)	No, n (%)	Sum, n (%)
Un	ilateral PTX (n = 1476)			
Α	Dehiscence <1 cm	446 (72.4)	170 (27.6)	616 (41.7)
В	Dehiscence 1–2 cm	341 (76.1)	107 (23.9)	448 (30.5)
С	Dehiscence >2 cm	295 (71.6)	117 (28.4)	412 (27.8)
Sur	m, n (%)	1082 (73.3)	394 (26.7)	
Bilate	eral PTX ($n = 176$)			
Α	Max. dehiscence <1 cm	36 (78.2)	10 (21.8)	46 (26.1)
В	Max. dehiscence 1-2 cm	62 (96.9)	2 (3.1)	64 (36.4)
С	Max. dehiscence >2 cm	56 (84.8)	10 (15.2)	66 (37.5)
Sur	m, n (%)	154 (87.5)	22 (12.5)	
Contr	rol cases ($n = 4782$)			
PT	X-negative	627 (13.1)	4155 (86.9)	4782

PTX-positive cases are radiologically annotated for PTX size, PTX location (unilateral vs bilateral), and inserted TTs. PTX-negative control cases are radiologically annotated for inserted TTs.

Chest X-ray images

Pneumothorax detection on real-world data

All data

Rückel, ... Ingrisch, Sabel. Investigative Radiology 55,12 (2020)

Critical subgroup: untreated PTX

Optimized AI model

In-image annotations of pneumothorax

Pneumothorax detection on real-world data Optimized algorithm

All data

Critical subgroup: untreated PTX

Rückel, ... Ingrisch , Sabel. European Radiology 2021

Model validation in clinical trials Essential for clinical application

External and prospective validation of AI are required for clinical acceptance

Ramspek et al., External validation of prognostic models: what, why, how, when and where? *Clinical Kidney Journal*, Volume 14, Issue 1, January 2021, Pages 49–58

AI in radiology Roadmap

Radiology: mapping of image to clinical decision – supervised ML problem

Ask the right questions, and answer them with the right data

Finding the right data: unsupervised and weakly supervised approaches?

Requirements and adoption barriers for AI in radiology

Finding and labeling the right radiological data Unsupervised and weakly supervised?

- Radiological data is typically insufficiently labelled (noisy, different context, free text reports, choose your nightmare)
- Labeling is expensive
 - Diagnosis, but even more so segmentation
- Minimize data to be labeled: Active learning to the rescue

Acquire label from oracle (i.e., human in the loop)

Train model on labeled subset

Courtesy Lisa Wimmer, Master's thesis

AI in radiology Roadmap

Radiology: mapping of image to clinical decision – supervised ML problem

Ask the right questions, and answer them with the right data

Finding the right data: unsupervised and weakly supervised approaches?

Requirements and adoption barriers for AI in radiology

Explainability

Does your model do what you think it does?

Feature importance

Accumulated Local Effects

GradCam Visualization

Generative Approaches

(a) Increasing the hazard rate leads to a spread of (larger) tumor patches.

 $x \xrightarrow{\text{Decrease hazard}} \widehat{x}$

(b) Decreasing the hazard rate results in shrinking and vanishing tumor patches.

Fabritius, ..., Mittermeier, Ingrisch. J Clin Med 2021 Weber T, Ingrisch M, Bischl B, Rügamer D. NeurIPS 2021, Bridging the Gap: From Machine Learning Research to Clinical Practice. Wesp, Grosu,..., Ingrisch. European Radiology 2022

Adoption barriers for AI

What hinders translation of AI into clinical routine

Development and deployment Data access IT landscape Regulations

Quality assurance

Transparency Sources of bias Validation

ഹ്രംപ
$\Rightarrow =$
$\lesssim \equiv$

Liability and responsibility Who is responsible when something goes wrong?

Clinical acceptance of AI in medicine What is required?

| panda

🔵 learn

1

Κ

Flask

Acknowledgements and collaborations

CDS Team

- B Schachtner, K Jeblick, A Mittermeier, P Wesp, T Stüber, T Weber, C Stampfl, J Topalis, J Dexl
- B Sabel, J Rückel, S Grosu, J Rudolph
- Department of Radiology
 - J Ricke, C Cyran, M Seidensticker, O Dietrich
- Clinical partners, LMU Klinikum and beyond
- Statistical Learning and Data Science, LMU
 - B Bischl, D Rügamer, A Bender, L Bothmann
- Informatics T Lasser (TUM), C Böhm (LMU)
- Math foundations of AI, G Kutyniok

OSIM Open Science in Medicine \$ C

MCML

Bundesministerium für Gesundheit

Gefördert durch

SIEME

Healthinee

Shiny

python

Jupyter

idyverse

ggplot2

rmarkdown

R Studio

