

Challenges of Big Data, Artificial Intelligence and Vehicle Data

July 2022 Christian Prehofer

Big Data for Vehicle Data Analysis

- Big Data for connected vehicle applications
 - Enormous amount of data
 - Many applications
- Use case driving behavior & energy efficiency
 - Compute efficiency for every second
 - Comparison of Big Data processing options

Use case driver status monitoring

- Privacy preserving data analysis with federated learning
- Discussion and Outlook

Motivation – Big Data and Data Analysis in Automotive

Vehicle Driving Data Applications: e.g. insurance, eco driving, predictive maintenance, ADAS / Autonomous Driving

2TB/day from internal CAN bus

Vehicle Sensor Data: 2 TB/hour

Applications of Connected Vehicles

- Enhancing in-vehicle functions
 - Routing and traffic data
 - Energy efficient driving
 - Enhanced autonomous driving functions

New services

- Insurance based on actual driving
- Car sharing
- In-car payment (fuel, ...)
- Management
 - Predictive maintenance
 - SW / function updates

DENSO Crafting the Core

Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved. ONS Edge Computing In Vehicle Computing

Source: pixabay

Big Data for Vehicle Data Analysis

- Big Data for connected vehicle applications
 - Enormous amount of data
 - Many applications

Use case driving behavior & energy efficiency

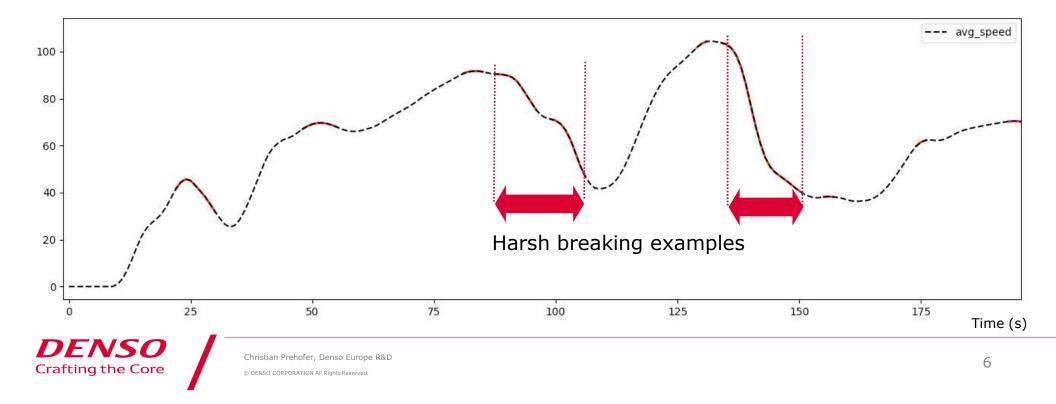
- Compute efficiency for every second
- **Comparison** of Big Data processing options

Use case driver status monitoring

- Privacy preserving data analysis with federated learning
- Discussion and Outlook

Example Driving Behavior: Harsh breaking

- Find out breaking phases based on speed and acceleration
- Hard brake: deceleration is greater than a certain threshold
- Example trip:



Use Case: Energy Efficiency

- Public data set (>500 trips, 8000km), incl.
 - Location
 - Speed
 - Energy consumption
 - Air conditioning, heating
 - Vehicle information (weight), ...
- Calculate "needed energy"
 - VSP: Vehicle specific power
 - Need road inclination (from GPS coordinates), acceleration etc

 $\frac{\mathbf{m} \cdot \mathbf{a}}{\mathbf{m} \cdot \mathbf{g} \cdot \sin(\mathbf{grade})} + F_{\text{rolling}}$

$$VSP\left[\frac{W}{kg}\right] = \frac{Power}{Mass} = \frac{\frac{d}{dt}(E_{kinetic} + E_{potential}) + F_{rolling} \times v - F_{aerodynamic} \times v}{m}$$

Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved.

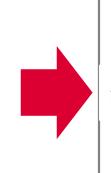
7

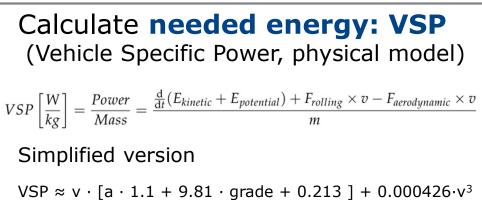
https://github.com/gsoh/VED/ blob/master/README.md

Use Case: Comparing Used and Needed Energy

Driving data for e-vehicles

- Speed
- Uphill/downhill
- Vehicle weight





Vehicle energy consumption

- KWh from e-vehicle data
- Consider AC and heating
- Temperature, Battery SOC

Needed vs actual energy

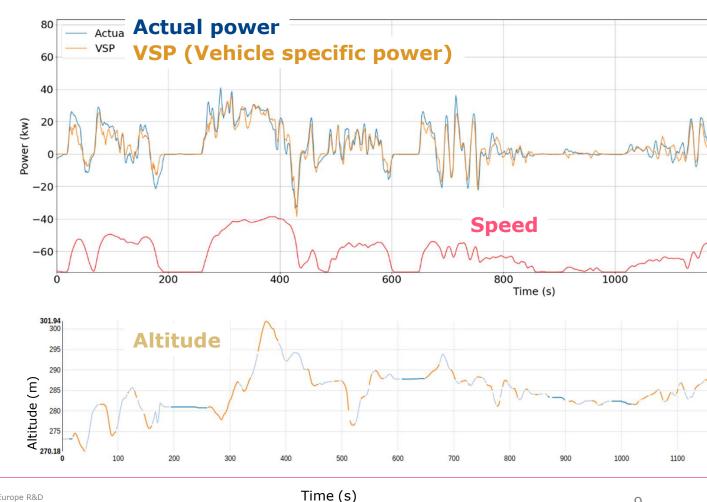
- Energy efficiency calculation
 - different driving phases
- Energy in different temperatures

Use Case: Energy Efficiency Analysis

Data Set from E-Vehicles >500 trips, 8000km

Needed vs used Energy

- Calculate physically ٠ energy needed for movement, "VSP"
- Compare VSP to actual ٠ power consumption, for every second
- Evaluation with Apache Spark, batch processing

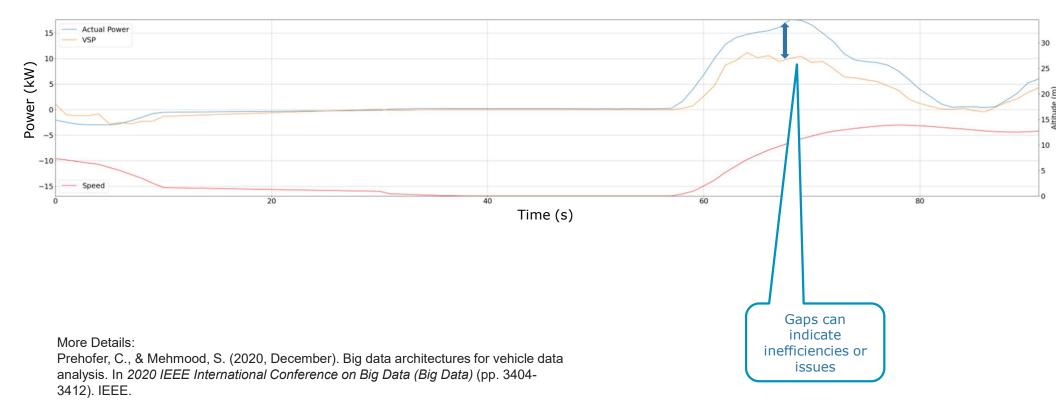


DENSO Crafting the Core

Christian Prehofer, Denso Europe R&D DENSO CORPORATION All Rights Reserved

9

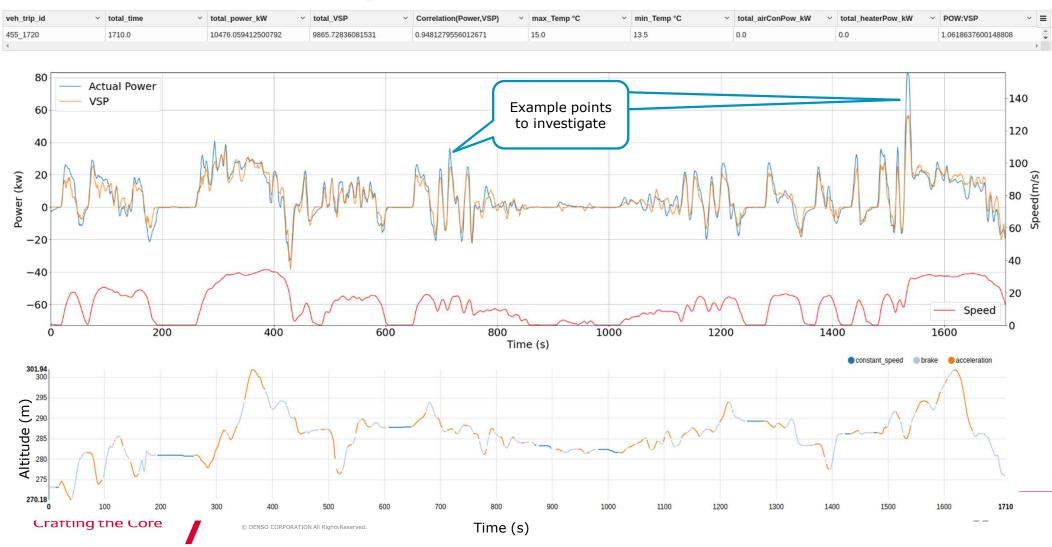
Example in more detail: VSP vs Actual Power



Christian Prehofer, Denso Europe R&D

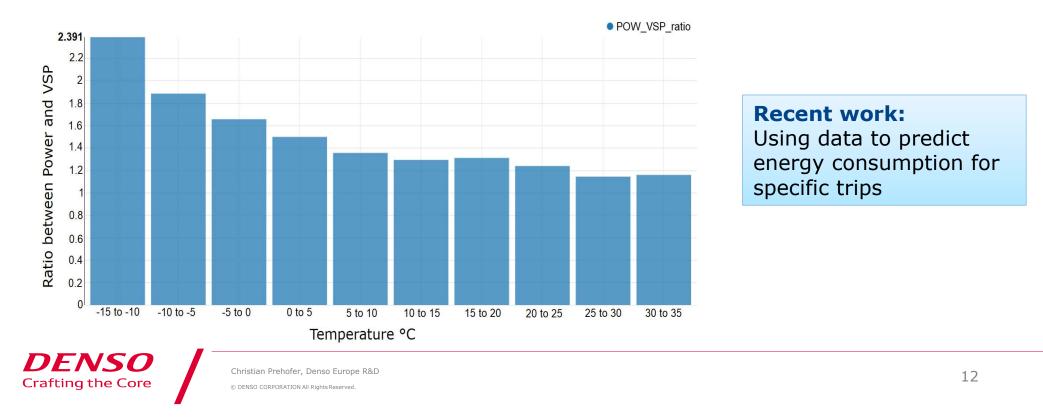
© DENSO CORPORATION All Rights Reserved

E-Vehicle Data with Uphill/Downhill



E-Vehicle Energy Consumption wrt Temperature

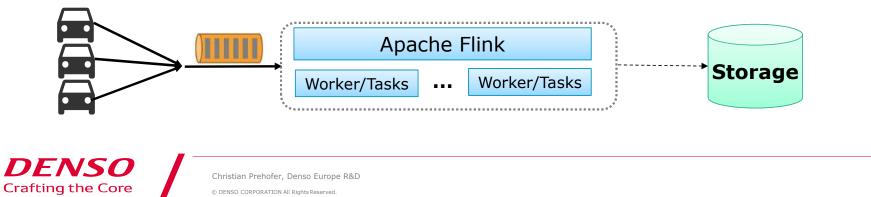
- Compute ratio between actual power and VSP for each trip
- Aggregation of 370 trips into temperature bins, total 4731 miles
- Clearly shows efficiency loss for colder temperatures



Data Stream processing (for same use case)

Apache Flink Stream processing

- Apache Flink as a "true" streaming processing engine
- The core of Flink is streams and transformations on dataflows
 - Many APIs, incl DataStream and SQL
- Note: Apache Flink mainly designed for online stream processing, Spark for batch.



Performance: Flink Big Data Scales Down

and the second	V P
_	
4	and the second second

		Vehicle data processing
Workstation, Intel Xeon W 3.7GHz, 8 Core, 3000 Euro	Number of Vehicle data streams (parallel)	45k
	Avgerage Latency range (ms)	1000 to 1800
Raspberry Pi 4b, ARM 7, 1.5 GHz, 4 Cores, 100 Euro	Number of Vehicle data streams	12k
	Avgerage Latency range (ms)	1000 to 2500

Big Data for Vehicle Data Analysis

- Big Data for connected vehicle applications
 - Enormous amount of data
 - Many applications
- Use case driving behavior & energy efficiency
 - Compute efficiency for every second
 - Comparison of Big Data processing options

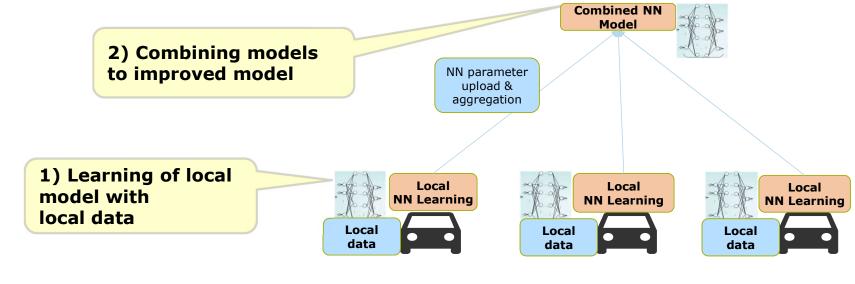
Use case driver status monitoring

- Privacy preserving data analysis with federated learning
- Discussion and Outlook

Federated Learning with Neuronal Networks (NN)

- 1. Learning with local data in cars to create local model
- 2. Models are merged from different vehicles/drivers (no image data upload!)
 - Exchange only NN parameters

3. Improves privacy + data transfer volume



DENSO Crafting the Core

Input Data: NTHU Dataset

- 36 people of different genders and ethnicities
- Total 9 and a half hours (varying length videos)
- Annotated per frame (Eye, Mouth, Head, Drowsiness)
- Train, Val, Test Split (after preprocessing):

*	Training	Validation	Test
Number of Subject	18	4	14
Number of annotations (per-frame)	537,245	145,049	596,590
Number of Videos	288	16	56

Work done with TU München

Zafar, A., Prehofer, C., & Cheng, C. H. (2021, September). Federated Learning for Driver Status Monitoring. In *2021 IEEE International Intelligent Transportation Systems Conference (ITSC)* (pp. 1463-1469). IEEE.

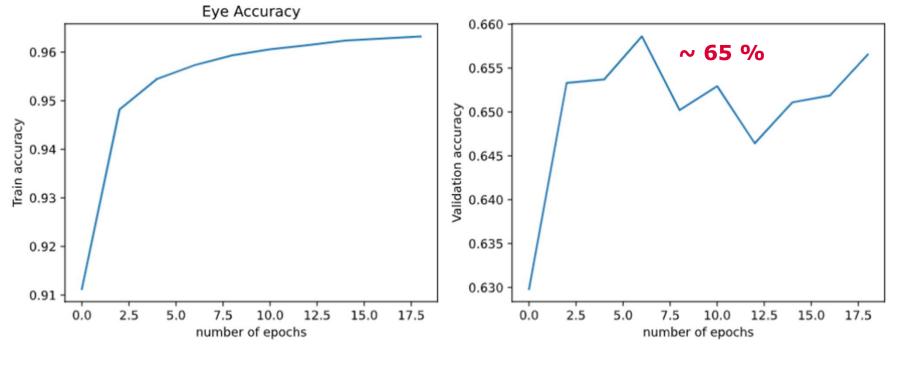
DENSO Crafting the Core

Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved.

Dataset:

Weng et al., "Driver Drowsiness Detection via a Hierarchical Temporal Deep Belief Network."]

Baseline, Centralized Model, per frame accuracy

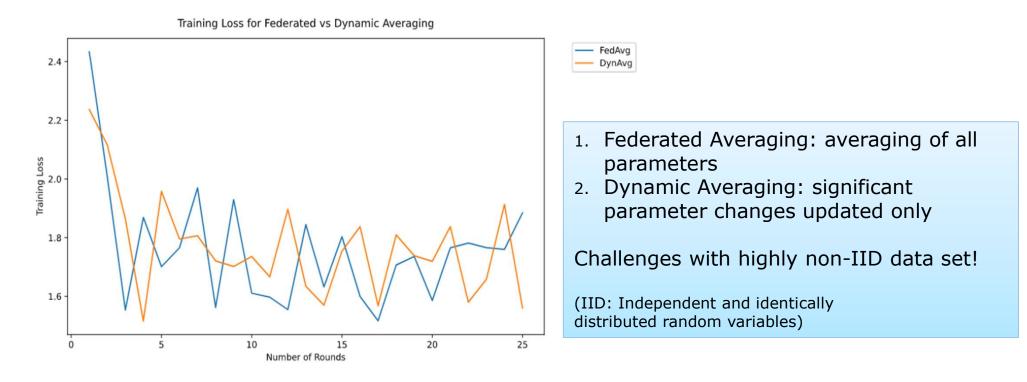


Note: Recognition of drowsiness based on **multiple frame results**

DENSO Crafting the Core

Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved. Experiment: initial learning rate: 1e - 2 (0.01), lr decay: 0.001, momentum: 0.99, batchsize: 64, epochs: 20, batchNorm on conv layers + dropout rate (20%) on fc layers

Federated Learning: FedAvg and DynAvg

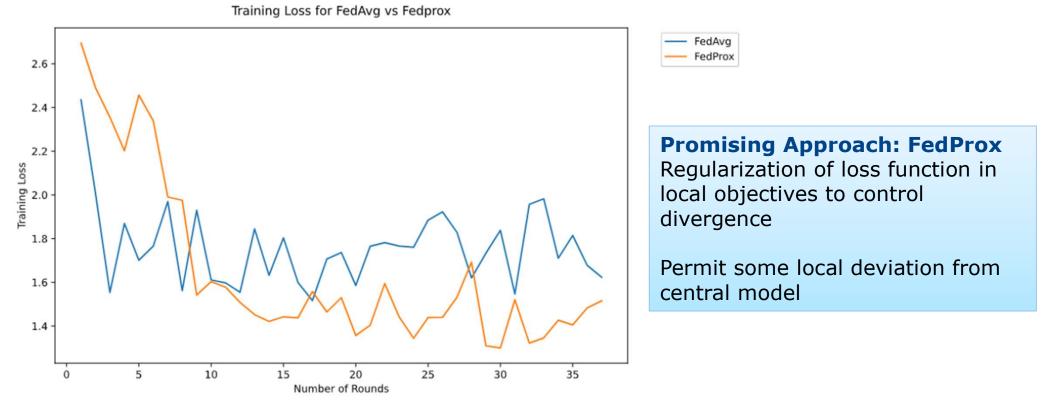


Training loss from our experiment ($\Delta = 0.5$) shows no improvement with non-IID data

Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved.

[Kamp et al., "Efficient Decentralized Deep Learning by Dynamic Model Averaging"]

Federated Learning: how much to aggregate from local updates



Training loss from our experiment ($\mu = 0.01$) shows improvement

DENSO Crafting the Core

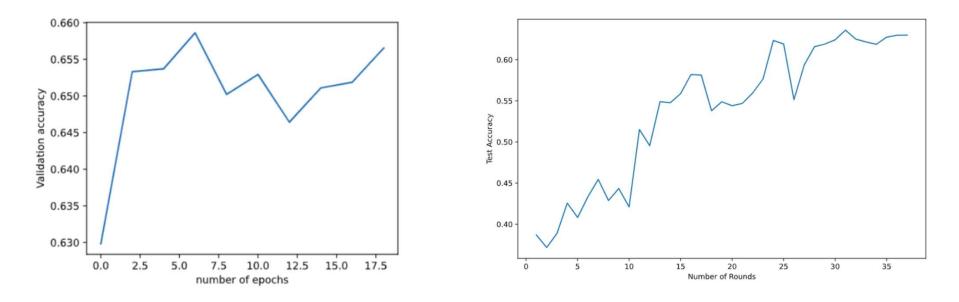
Christian Prehofer, Denso Europe R&D © DENSO CORPORATION All Rights Reserved.

[Li et al., ""Federated Optimization in Heterogeneous Networks"]

Results: Comparing baseline vs FedProx

Predictive performance

New results with >80% accuracy in our labs. Needed more and high-quality data



Test Accuracy for baseline model (65%) and federated model (62%) for Eye Class

DENSO Crafting the Core

Big Data and Vehicle Data Analysis

Many applications for vehicle data

- Different requirements
- Challgenes of data collection and processing

Performance and scalability of Big Data solutions

- Apache Flink scales down to small machines (4 cores)
- Distributed Big Data processing can be highly efficient

Privacy-aware distributed AI with federated learning

- Training data does not leave the vehicle
- Promising first result on FedProx, currently ongoing work

Thanks to Shafqat Mehmood, Atiqa Zafar, Shumail Mohyuddin, Chih-Hong Chen, William Lindskog

DENSO Crafting the Core